Developing a mixed reality assistance system based on projection mapping technology for manual operations at assembly workstations.

ABSTRACT Manual tasks play an important role in social sustainable manufacturing enterprises. Commonly, manual operations are used for low volume productions, but are not limited to. Operational models in manufacturing sisters cased of x-to-order paradigms (e.g. assembly-to-order) may require man...

Descripción completa

Detalles Bibliográficos
Autor principal: Rodríguez Puebla, Leonardo Vinicio
Formato: Tesis
Lenguaje:inglés
Publicado: 2016
Acceso en línea:http://eprints.uanl.mx/15897/1/1080237862.pdf
Descripción
Sumario:ABSTRACT Manual tasks play an important role in social sustainable manufacturing enterprises. Commonly, manual operations are used for low volume productions, but are not limited to. Operational models in manufacturing sisters cased of x-to-order paradigms (e.g. assembly-to-order) may require manual operations to speed-up the ramp-up time of new product configuration assemblies. The implications of manual operations in any production line may imply that any manufacturing or assembly process become more susceptible to human errors and therefore translate into delays, defects and/or poor product quality. In this scenario, virtual and augmented realities can offer significant advantages to support the human operator in manual operations. This research work presents the development of a mixed (virtual and augmented) reality assistance system that permits real-time support in manual operations. A review of mixed reality techniques and technologies was conducted, where it was determined to use a projection mapping solution for the proposed assistance system. According to the specific requirements of the demonstration environment, hardware and software components were chosen. The developed mixed reality assistance system was able to guide any user without any prior knowledge through the successful completion of the specific assembly task.