Is the Cis-Element CACCC-Box a Master Regulatory Element during Cardiovascular Disease? A Bioinformatics Approach from the Perspective of the Krüppel-like Family of Transcription Factors

The CACCC-box motif emerges as a pivotal cis-regulatory element implicated in diverse developmental processes and diseases, particularly cardiovascular diseases (CVDs). This study centers on the intricate interplay between the CACCC-box and its binding proteins such as: the Krüppel-Like Family (KLF)...

Full description

Bibliographic Details
Main Authors: García Loredo, Juan Andrés, Santoyo Suarez, Michelle Giovanna, Rodríguez Núñez, Oscar, Benitez Chao, Diego Francisco, Garza Treviño, Elsa Nancy, Zapata Morin, Patricio Adrián, Padilla Rivas, Gerardo Raymundo, Islas Cisneros, Jose Francisco
Format: Article
Language:English
Published: 2024
Subjects:
Online Access:http://eprints.uanl.mx/27920/7/27920.pdf
Description
Summary:The CACCC-box motif emerges as a pivotal cis-regulatory element implicated in diverse developmental processes and diseases, particularly cardiovascular diseases (CVDs). This study centers on the intricate interplay between the CACCC-box and its binding proteins such as: the Krüppel-Like Family (KLF) of transcription factors as primary effectors in the context of CVDs. Our analysis was through a bioinformatics approach, which revealed significant transcriptional activity among KLF subgroup 2, exhibiting the highest number of interactions focusing on the established roles: pluripotency, cancer, and cardiovascular development and diseases. Our analysis reveals KLF’s interactions with GATA4, MEF2C, NKX2.5 and other ~90 potential genes that participate in the regulation of the hypertrophic environment (or CVDs’ Environment). Also, the GO analysis showed that genes containing the motif CACCC were enriched for multiple CVDs; in combination with STRING analysis, these results pointed to a link between KLFs and these diseases. The analysis further identifies other potential CACCC-box binding factors, such as SP family members, WT1, VEZF1, and -SALL4, which are implicated in cardiac contraction, remodeling, and inflammation processes.