Robust Dynamic Programming in N Players Uncertain Differential Games

In this paper we consider a non-cooperative N players differential game affected by deterministic uncertainties. Sufficient conditions for the existence of a robust feedback Nash equilibrium are presented in a set of min-max forms of Hamilton–Jacobi–Bellman equations. Such conditions are then used t...

Full description

Bibliographic Details
Main Authors: Jiménez Lizárraga, Manuel, Rodríguez Sánchez, Sara V., De la Cruz, Naín, Villarreal, César Emilio
Format: Article
Language:English
Published: Vilnius University 2020
Subjects:
Online Access:http://eprints.uanl.mx/25056/1/43.pdf
Description
Summary:In this paper we consider a non-cooperative N players differential game affected by deterministic uncertainties. Sufficient conditions for the existence of a robust feedback Nash equilibrium are presented in a set of min-max forms of Hamilton–Jacobi–Bellman equations. Such conditions are then used to find the robust Nash controls for a linear affine quadratic game affected by a square integrable uncertainty, which is seen as a malicious fictitious player trying to maximize the cost function of each player. The approach allows us to find robust strategies in the solution of a group of coupled Riccati differential equation. The finite, as well as infinite, time horizon cases are solved for this last game. As an illustration of the approach, the problem of the coordination of a two-echelon supply chain with seasonal uncertain fluctuations in demand is developed