Packing Oblique 3D Objects
Packing irregular 3D objects in a cuboid of minimum volume is considered. Each object is composed of a number of convex shapes, such as oblique and right circular cylinders, cones and truncated cones. New analytical tools are introduced to state placement constraints for oblique shapes. Using the ph...
Autores principales: | , , |
---|---|
Formato: | Artículo |
Lenguaje: | inglés |
Publicado: |
Molecular Diversity Preservation International
2020
|
Materias: | |
Acceso en línea: | http://eprints.uanl.mx/23338/1/23338.pdf |
_version_ | 1824416846873362432 |
---|---|
author | Pankratov, Alexander Romanova, Tatiana Litvinchev, Igor |
author_facet | Pankratov, Alexander Romanova, Tatiana Litvinchev, Igor |
author_sort | Pankratov, Alexander |
collection | Repositorio Institucional |
description | Packing irregular 3D objects in a cuboid of minimum volume is considered. Each object is composed of a number of convex shapes, such as oblique and right circular cylinders, cones and truncated cones. New analytical tools are introduced to state placement constraints for oblique shapes. Using the phi-function technique, optimized packing is reduced to a nonlinear programming problem. Novel solution approach is provided and illustrated by numerical examples. |
format | Article |
id | eprints-23338 |
institution | UANL |
language | English |
publishDate | 2020 |
publisher | Molecular Diversity Preservation International |
record_format | eprints |
spelling | eprints-233382022-09-02T18:27:06Z http://eprints.uanl.mx/23338/ Packing Oblique 3D Objects Pankratov, Alexander Romanova, Tatiana Litvinchev, Igor QA Matemáticas, Ciencias computacionales Packing irregular 3D objects in a cuboid of minimum volume is considered. Each object is composed of a number of convex shapes, such as oblique and right circular cylinders, cones and truncated cones. New analytical tools are introduced to state placement constraints for oblique shapes. Using the phi-function technique, optimized packing is reduced to a nonlinear programming problem. Novel solution approach is provided and illustrated by numerical examples. Molecular Diversity Preservation International 2020 Article PeerReviewed text en cc_by_nc_nd http://eprints.uanl.mx/23338/1/23338.pdf http://eprints.uanl.mx/23338/1.haspreviewThumbnailVersion/23338.pdf Pankratov, Alexander y Romanova, Tatiana y Litvinchev, Igor (2020) Packing Oblique 3D Objects. Mathematics, 8 (7). pp. 1-16. ISSN 2227-7390 http://doi.org/10.3390/math8071130 doi:10.3390/math8071130 |
spellingShingle | QA Matemáticas, Ciencias computacionales Pankratov, Alexander Romanova, Tatiana Litvinchev, Igor Packing Oblique 3D Objects |
thumbnail | https://rediab.uanl.mx/themes/sandal5/images/online.png |
title | Packing Oblique 3D Objects |
title_full | Packing Oblique 3D Objects |
title_fullStr | Packing Oblique 3D Objects |
title_full_unstemmed | Packing Oblique 3D Objects |
title_short | Packing Oblique 3D Objects |
title_sort | packing oblique 3d objects |
topic | QA Matemáticas, Ciencias computacionales |
url | http://eprints.uanl.mx/23338/1/23338.pdf |
work_keys_str_mv | AT pankratovalexander packingoblique3dobjects AT romanovatatiana packingoblique3dobjects AT litvinchevigor packingoblique3dobjects |