Packing Oblique 3D Objects

Packing irregular 3D objects in a cuboid of minimum volume is considered. Each object is composed of a number of convex shapes, such as oblique and right circular cylinders, cones and truncated cones. New analytical tools are introduced to state placement constraints for oblique shapes. Using the ph...

Full description

Bibliographic Details
Main Authors: Pankratov, Alexander, Romanova, Tatiana, Litvinchev, Igor
Format: Article
Language:English
Published: Molecular Diversity Preservation International 2020
Subjects:
Online Access:http://eprints.uanl.mx/23338/1/23338.pdf
_version_ 1824416846873362432
author Pankratov, Alexander
Romanova, Tatiana
Litvinchev, Igor
author_facet Pankratov, Alexander
Romanova, Tatiana
Litvinchev, Igor
author_sort Pankratov, Alexander
collection Repositorio Institucional
description Packing irregular 3D objects in a cuboid of minimum volume is considered. Each object is composed of a number of convex shapes, such as oblique and right circular cylinders, cones and truncated cones. New analytical tools are introduced to state placement constraints for oblique shapes. Using the phi-function technique, optimized packing is reduced to a nonlinear programming problem. Novel solution approach is provided and illustrated by numerical examples.
format Article
id eprints-23338
institution UANL
language English
publishDate 2020
publisher Molecular Diversity Preservation International
record_format eprints
spelling eprints-233382022-09-02T18:27:06Z http://eprints.uanl.mx/23338/ Packing Oblique 3D Objects Pankratov, Alexander Romanova, Tatiana Litvinchev, Igor QA Matemáticas, Ciencias computacionales Packing irregular 3D objects in a cuboid of minimum volume is considered. Each object is composed of a number of convex shapes, such as oblique and right circular cylinders, cones and truncated cones. New analytical tools are introduced to state placement constraints for oblique shapes. Using the phi-function technique, optimized packing is reduced to a nonlinear programming problem. Novel solution approach is provided and illustrated by numerical examples. Molecular Diversity Preservation International 2020 Article PeerReviewed text en cc_by_nc_nd http://eprints.uanl.mx/23338/1/23338.pdf http://eprints.uanl.mx/23338/1.haspreviewThumbnailVersion/23338.pdf Pankratov, Alexander y Romanova, Tatiana y Litvinchev, Igor (2020) Packing Oblique 3D Objects. Mathematics, 8 (7). pp. 1-16. ISSN 2227-7390 http://doi.org/10.3390/math8071130 doi:10.3390/math8071130
spellingShingle QA Matemáticas, Ciencias computacionales
Pankratov, Alexander
Romanova, Tatiana
Litvinchev, Igor
Packing Oblique 3D Objects
thumbnail https://rediab.uanl.mx/themes/sandal5/images/online.png
title Packing Oblique 3D Objects
title_full Packing Oblique 3D Objects
title_fullStr Packing Oblique 3D Objects
title_full_unstemmed Packing Oblique 3D Objects
title_short Packing Oblique 3D Objects
title_sort packing oblique 3d objects
topic QA Matemáticas, Ciencias computacionales
url http://eprints.uanl.mx/23338/1/23338.pdf
work_keys_str_mv AT pankratovalexander packingoblique3dobjects
AT romanovatatiana packingoblique3dobjects
AT litvinchevigor packingoblique3dobjects