Packing Oblique 3D Objects
Packing irregular 3D objects in a cuboid of minimum volume is considered. Each object is composed of a number of convex shapes, such as oblique and right circular cylinders, cones and truncated cones. New analytical tools are introduced to state placement constraints for oblique shapes. Using the ph...
| Autores principales: | , , |
|---|---|
| Formato: | Artículo |
| Lenguaje: | inglés |
| Publicado: |
Molecular Diversity Preservation International
2020
|
| Materias: | |
| Acceso en línea: | http://eprints.uanl.mx/23338/1/23338.pdf |
| _version_ | 1824416846873362432 |
|---|---|
| author | Pankratov, Alexander Romanova, Tatiana Litvinchev, Igor |
| author_facet | Pankratov, Alexander Romanova, Tatiana Litvinchev, Igor |
| author_sort | Pankratov, Alexander |
| collection | Repositorio Institucional |
| description | Packing irregular 3D objects in a cuboid of minimum volume is considered. Each object is composed of a number of convex shapes, such as oblique and right circular cylinders, cones and truncated cones. New analytical tools are introduced to state placement constraints for oblique shapes. Using the phi-function technique, optimized packing is reduced to a nonlinear programming problem. Novel solution approach is provided and illustrated by numerical examples. |
| format | Article |
| id | eprints-23338 |
| institution | UANL |
| language | English |
| publishDate | 2020 |
| publisher | Molecular Diversity Preservation International |
| record_format | eprints |
| spelling | eprints-233382022-09-02T18:27:06Z http://eprints.uanl.mx/23338/ Packing Oblique 3D Objects Pankratov, Alexander Romanova, Tatiana Litvinchev, Igor QA Matemáticas, Ciencias computacionales Packing irregular 3D objects in a cuboid of minimum volume is considered. Each object is composed of a number of convex shapes, such as oblique and right circular cylinders, cones and truncated cones. New analytical tools are introduced to state placement constraints for oblique shapes. Using the phi-function technique, optimized packing is reduced to a nonlinear programming problem. Novel solution approach is provided and illustrated by numerical examples. Molecular Diversity Preservation International 2020 Article PeerReviewed text en cc_by_nc_nd http://eprints.uanl.mx/23338/1/23338.pdf http://eprints.uanl.mx/23338/1.haspreviewThumbnailVersion/23338.pdf Pankratov, Alexander y Romanova, Tatiana y Litvinchev, Igor (2020) Packing Oblique 3D Objects. Mathematics, 8 (7). pp. 1-16. ISSN 2227-7390 http://doi.org/10.3390/math8071130 doi:10.3390/math8071130 |
| spellingShingle | QA Matemáticas, Ciencias computacionales Pankratov, Alexander Romanova, Tatiana Litvinchev, Igor Packing Oblique 3D Objects |
| thumbnail | https://rediab.uanl.mx/themes/sandal5/images/online.png |
| title | Packing Oblique 3D Objects |
| title_full | Packing Oblique 3D Objects |
| title_fullStr | Packing Oblique 3D Objects |
| title_full_unstemmed | Packing Oblique 3D Objects |
| title_short | Packing Oblique 3D Objects |
| title_sort | packing oblique 3d objects |
| topic | QA Matemáticas, Ciencias computacionales |
| url | http://eprints.uanl.mx/23338/1/23338.pdf |
| work_keys_str_mv | AT pankratovalexander packingoblique3dobjects AT romanovatatiana packingoblique3dobjects AT litvinchevigor packingoblique3dobjects |