Smart Corrosion Monitoring in AA2055 Using Hidden Markov Models and Electrochemical Noise Signal Processing

This work explores the application of Hidden Markov Models (HMMs) for the classification and reconstruction of corrosion mechanisms in the aerospace-grade aluminum alloy AA2055 from the signals obtained by electrochemical noise (EN) analysis. Using the PELT algorithm to segment the signal based on r...

Descripción completa

Detalles Bibliográficos
Autores principales: Martínez Ramos, Cynthia, Gaona Tiburcio, Citlalli, Estupiñan López, Francisco Humberto, Cabral Miramontes, José Ángel, Maldonado Bandala, Erick, Almeraya Calderón, Facundo, Nieves Mendoza, Demetrio, Baltazar Zamora, Miguel Ángel, Landa Ruiz, Laura, Galván Martínez, Ricardo
Formato: Artículo
Lenguaje:inglés
Publicado: Molecular diversity preservation international 2025
Materias:
Acceso en línea:http://eprints.uanl.mx/30102/7/30102.pdf
_version_ 1836640498147655680
author Martínez Ramos, Cynthia
Gaona Tiburcio, Citlalli
Estupiñan López, Francisco Humberto
Cabral Miramontes, José Ángel
Maldonado Bandala, Erick
Almeraya Calderón, Facundo
Nieves Mendoza, Demetrio
Baltazar Zamora, Miguel Ángel
Landa Ruiz, Laura
Galván Martínez, Ricardo
Almeraya Calderón, Facundo
author_facet Martínez Ramos, Cynthia
Gaona Tiburcio, Citlalli
Estupiñan López, Francisco Humberto
Cabral Miramontes, José Ángel
Maldonado Bandala, Erick
Almeraya Calderón, Facundo
Nieves Mendoza, Demetrio
Baltazar Zamora, Miguel Ángel
Landa Ruiz, Laura
Galván Martínez, Ricardo
Almeraya Calderón, Facundo
author_sort Martínez Ramos, Cynthia
collection Repositorio Institucional
description This work explores the application of Hidden Markov Models (HMMs) for the classification and reconstruction of corrosion mechanisms in the aerospace-grade aluminum alloy AA2055 from the signals obtained by electrochemical noise (EN) analysis. Using the PELT algorithm to segment the signal based on relevant changepoints, distinct corrosion states within the segments are isolated and identified, including general, localized, and mixed corrosion based on statistical signal features, which are used to create the probabilistic structure of HMMs through the initiation, transition, and emission matrices. This study utilized a dataset composed of five electrolyte groups, each containing ten EN signals with 1024 data points per signal, totaling 51,200 data points. The model demonstrates that even with variability in signal quality, meaningful reconstruction is achievable, especially when datasets include distinct transient behavior.
format Article
id eprints-30102
institution UANL
language English
publishDate 2025
publisher Molecular diversity preservation international
record_format eprints
spelling eprints-301022025-07-03T14:17:54Z http://eprints.uanl.mx/30102/ Smart Corrosion Monitoring in AA2055 Using Hidden Markov Models and Electrochemical Noise Signal Processing Martínez Ramos, Cynthia Gaona Tiburcio, Citlalli Estupiñan López, Francisco Humberto Cabral Miramontes, José Ángel Maldonado Bandala, Erick Almeraya Calderón, Facundo Nieves Mendoza, Demetrio Baltazar Zamora, Miguel Ángel Landa Ruiz, Laura Galván Martínez, Ricardo Almeraya Calderón, Facundo TA Ingeniería General y Civil This work explores the application of Hidden Markov Models (HMMs) for the classification and reconstruction of corrosion mechanisms in the aerospace-grade aluminum alloy AA2055 from the signals obtained by electrochemical noise (EN) analysis. Using the PELT algorithm to segment the signal based on relevant changepoints, distinct corrosion states within the segments are isolated and identified, including general, localized, and mixed corrosion based on statistical signal features, which are used to create the probabilistic structure of HMMs through the initiation, transition, and emission matrices. This study utilized a dataset composed of five electrolyte groups, each containing ten EN signals with 1024 data points per signal, totaling 51,200 data points. The model demonstrates that even with variability in signal quality, meaningful reconstruction is achievable, especially when datasets include distinct transient behavior. Molecular diversity preservation international 2025-06-17 Article PeerReviewed text en cc_by_nc_nd http://eprints.uanl.mx/30102/7/30102.pdf http://eprints.uanl.mx/30102/7.haspreviewThumbnailVersion/30102.pdf Martínez Ramos, Cynthia y Gaona Tiburcio, Citlalli y Estupiñan López, Francisco Humberto y Cabral Miramontes, José Ángel y Maldonado Bandala, Erick y Almeraya Calderón, Facundo y Nieves Mendoza, Demetrio y Baltazar Zamora, Miguel Ángel y Landa Ruiz, Laura y Galván Martínez, Ricardo y Almeraya Calderón, Facundo (2025) Smart Corrosion Monitoring in AA2055 Using Hidden Markov Models and Electrochemical Noise Signal Processing. Materials, 18 (12). pp. 1-12. ISSN 1996-1944 https://www.mdpi.com/1996-1944/18/12/2865# 2865
spellingShingle TA Ingeniería General y Civil
Martínez Ramos, Cynthia
Gaona Tiburcio, Citlalli
Estupiñan López, Francisco Humberto
Cabral Miramontes, José Ángel
Maldonado Bandala, Erick
Almeraya Calderón, Facundo
Nieves Mendoza, Demetrio
Baltazar Zamora, Miguel Ángel
Landa Ruiz, Laura
Galván Martínez, Ricardo
Almeraya Calderón, Facundo
Smart Corrosion Monitoring in AA2055 Using Hidden Markov Models and Electrochemical Noise Signal Processing
thumbnail https://rediab.uanl.mx/themes/sandal5/images/online.png
title Smart Corrosion Monitoring in AA2055 Using Hidden Markov Models and Electrochemical Noise Signal Processing
title_full Smart Corrosion Monitoring in AA2055 Using Hidden Markov Models and Electrochemical Noise Signal Processing
title_fullStr Smart Corrosion Monitoring in AA2055 Using Hidden Markov Models and Electrochemical Noise Signal Processing
title_full_unstemmed Smart Corrosion Monitoring in AA2055 Using Hidden Markov Models and Electrochemical Noise Signal Processing
title_short Smart Corrosion Monitoring in AA2055 Using Hidden Markov Models and Electrochemical Noise Signal Processing
title_sort smart corrosion monitoring in aa2055 using hidden markov models and electrochemical noise signal processing
topic TA Ingeniería General y Civil
url http://eprints.uanl.mx/30102/7/30102.pdf
work_keys_str_mv AT martinezramoscynthia smartcorrosionmonitoringinaa2055usinghiddenmarkovmodelsandelectrochemicalnoisesignalprocessing
AT gaonatiburciocitlalli smartcorrosionmonitoringinaa2055usinghiddenmarkovmodelsandelectrochemicalnoisesignalprocessing
AT estupinanlopezfranciscohumberto smartcorrosionmonitoringinaa2055usinghiddenmarkovmodelsandelectrochemicalnoisesignalprocessing
AT cabralmiramontesjoseangel smartcorrosionmonitoringinaa2055usinghiddenmarkovmodelsandelectrochemicalnoisesignalprocessing
AT maldonadobandalaerick smartcorrosionmonitoringinaa2055usinghiddenmarkovmodelsandelectrochemicalnoisesignalprocessing
AT almerayacalderonfacundo smartcorrosionmonitoringinaa2055usinghiddenmarkovmodelsandelectrochemicalnoisesignalprocessing
AT nievesmendozademetrio smartcorrosionmonitoringinaa2055usinghiddenmarkovmodelsandelectrochemicalnoisesignalprocessing
AT baltazarzamoramiguelangel smartcorrosionmonitoringinaa2055usinghiddenmarkovmodelsandelectrochemicalnoisesignalprocessing
AT landaruizlaura smartcorrosionmonitoringinaa2055usinghiddenmarkovmodelsandelectrochemicalnoisesignalprocessing
AT galvanmartinezricardo smartcorrosionmonitoringinaa2055usinghiddenmarkovmodelsandelectrochemicalnoisesignalprocessing
AT almerayacalderonfacundo smartcorrosionmonitoringinaa2055usinghiddenmarkovmodelsandelectrochemicalnoisesignalprocessing