Electrochemical Noise Analysis: An Approach to the Effectivity of Each Method in Different Materials
Corrosion deterioration of materials is a major problem affecting economic, safety, and logistical issues, especially in the aeronautical sector. Detecting the correct corrosion type in metal alloys is very important to know how to mitigate the corrosion problem. Electrochemical noise (EN) is a corr...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Molecular Diversity Preservation International
2024
|
Subjects: | |
Online Access: | http://eprints.uanl.mx/27922/1/materials-17-04013-Jaquez.pdf |
_version_ | 1836640494879244288 |
---|---|
author | Jáquez Muñoz, Jesús Manuel Gaona Tiburcio, Citlalli Méndez Ramírez, Ce Tochtli Martínez Ramos, Cynthia Baltazar Zamora, Miguel Ángel Santiago Hurtado, Griselda Estupiñan López, Francisco Humberto Landa Ruiz, Laura Nieves Mendoza, Demetrio Almeraya Calderón, Facundo |
author_facet | Jáquez Muñoz, Jesús Manuel Gaona Tiburcio, Citlalli Méndez Ramírez, Ce Tochtli Martínez Ramos, Cynthia Baltazar Zamora, Miguel Ángel Santiago Hurtado, Griselda Estupiñan López, Francisco Humberto Landa Ruiz, Laura Nieves Mendoza, Demetrio Almeraya Calderón, Facundo |
author_sort | Jáquez Muñoz, Jesús Manuel |
collection | Repositorio Institucional |
description | Corrosion deterioration of materials is a major problem affecting economic, safety, and logistical issues, especially in the aeronautical sector. Detecting the correct corrosion type in metal alloys is very important to know how to mitigate the corrosion problem. Electrochemical noise (EN) is a corrosion technique used to characterize the behavior of different alloys and determine the type of corrosion in a system. The objective of this research is to characterize by EN technique different aeronautical alloys (Al, Ti, steels, and superalloys) using different analysis methods such as time domain (visual analysis, statistical), frequency domain (power spectral density (PSD)), and frequency–time domain (wavelet decomposition, Hilbert Huang analysis, and recurrence plots (RP)) related to the corrosion process. Optical microscopy (OM) is used to observe the surface of the tested samples. The alloys were exposed to 3.5 wt.% NaCl and H2SO4 solutions at room temperature. The results indicate that HHT and recurrence plots are the best options for determining the corrosion type compared with the other methods due to their ability to analyze dynamic and chaotic systems, such as corrosion. Corrosion processes such as passivation and localized corrosion can be differentiated when analyzed using HHT and RP methods when a passive system presents values of determinism between 0.5 and 0.8. Also, to differentiate the passive system from the localized system, it is necessary to see the recurrence plot due to the similarity of the determinism value. Noise impedance (Zn) is one of the best options for determining the corrosion kinetics of one system, showing that Ti CP2 and Ti-6Al-4V presented 742,824 and 939,575 Ω·cm2, while Rn presented 271,851 and 325,751 Ω·cm2, being the highest when exposed to H2SO4. |
format | Article |
id | eprints-27922 |
institution | UANL |
language | English |
publishDate | 2024 |
publisher | Molecular Diversity Preservation International |
record_format | eprints |
spelling | eprints-279222025-07-03T14:19:10Z http://eprints.uanl.mx/27922/ Electrochemical Noise Analysis: An Approach to the Effectivity of Each Method in Different Materials Jáquez Muñoz, Jesús Manuel Gaona Tiburcio, Citlalli Méndez Ramírez, Ce Tochtli Martínez Ramos, Cynthia Baltazar Zamora, Miguel Ángel Santiago Hurtado, Griselda Estupiñan López, Francisco Humberto Landa Ruiz, Laura Nieves Mendoza, Demetrio Almeraya Calderón, Facundo TA Ingeniería General y Civil Corrosion deterioration of materials is a major problem affecting economic, safety, and logistical issues, especially in the aeronautical sector. Detecting the correct corrosion type in metal alloys is very important to know how to mitigate the corrosion problem. Electrochemical noise (EN) is a corrosion technique used to characterize the behavior of different alloys and determine the type of corrosion in a system. The objective of this research is to characterize by EN technique different aeronautical alloys (Al, Ti, steels, and superalloys) using different analysis methods such as time domain (visual analysis, statistical), frequency domain (power spectral density (PSD)), and frequency–time domain (wavelet decomposition, Hilbert Huang analysis, and recurrence plots (RP)) related to the corrosion process. Optical microscopy (OM) is used to observe the surface of the tested samples. The alloys were exposed to 3.5 wt.% NaCl and H2SO4 solutions at room temperature. The results indicate that HHT and recurrence plots are the best options for determining the corrosion type compared with the other methods due to their ability to analyze dynamic and chaotic systems, such as corrosion. Corrosion processes such as passivation and localized corrosion can be differentiated when analyzed using HHT and RP methods when a passive system presents values of determinism between 0.5 and 0.8. Also, to differentiate the passive system from the localized system, it is necessary to see the recurrence plot due to the similarity of the determinism value. Noise impedance (Zn) is one of the best options for determining the corrosion kinetics of one system, showing that Ti CP2 and Ti-6Al-4V presented 742,824 and 939,575 Ω·cm2, while Rn presented 271,851 and 325,751 Ω·cm2, being the highest when exposed to H2SO4. Molecular Diversity Preservation International 2024-08-12 Article PeerReviewed text en cc_by_nc_nd http://eprints.uanl.mx/27922/1/materials-17-04013-Jaquez.pdf http://eprints.uanl.mx/27922/1.haspreviewThumbnailVersion/materials-17-04013-Jaquez.pdf Jáquez Muñoz, Jesús Manuel y Gaona Tiburcio, Citlalli y Méndez Ramírez, Ce Tochtli y Martínez Ramos, Cynthia y Baltazar Zamora, Miguel Ángel y Santiago Hurtado, Griselda y Estupiñan López, Francisco Humberto y Landa Ruiz, Laura y Nieves Mendoza, Demetrio y Almeraya Calderón, Facundo (2024) Electrochemical Noise Analysis: An Approach to the Effectivity of Each Method in Different Materials. Materials, 2024 (17). pp. 1-24. ISSN 1996-1944 https://doi.org/10.3390/ma17164013 4013 |
spellingShingle | TA Ingeniería General y Civil Jáquez Muñoz, Jesús Manuel Gaona Tiburcio, Citlalli Méndez Ramírez, Ce Tochtli Martínez Ramos, Cynthia Baltazar Zamora, Miguel Ángel Santiago Hurtado, Griselda Estupiñan López, Francisco Humberto Landa Ruiz, Laura Nieves Mendoza, Demetrio Almeraya Calderón, Facundo Electrochemical Noise Analysis: An Approach to the Effectivity of Each Method in Different Materials |
thumbnail | https://rediab.uanl.mx/themes/sandal5/images/online.png |
title | Electrochemical Noise Analysis: An Approach to the Effectivity of Each Method in Different Materials |
title_full | Electrochemical Noise Analysis: An Approach to the Effectivity of Each Method in Different Materials |
title_fullStr | Electrochemical Noise Analysis: An Approach to the Effectivity of Each Method in Different Materials |
title_full_unstemmed | Electrochemical Noise Analysis: An Approach to the Effectivity of Each Method in Different Materials |
title_short | Electrochemical Noise Analysis: An Approach to the Effectivity of Each Method in Different Materials |
title_sort | electrochemical noise analysis an approach to the effectivity of each method in different materials |
topic | TA Ingeniería General y Civil |
url | http://eprints.uanl.mx/27922/1/materials-17-04013-Jaquez.pdf |
work_keys_str_mv | AT jaquezmunozjesusmanuel electrochemicalnoiseanalysisanapproachtotheeffectivityofeachmethodindifferentmaterials AT gaonatiburciocitlalli electrochemicalnoiseanalysisanapproachtotheeffectivityofeachmethodindifferentmaterials AT mendezramirezcetochtli electrochemicalnoiseanalysisanapproachtotheeffectivityofeachmethodindifferentmaterials AT martinezramoscynthia electrochemicalnoiseanalysisanapproachtotheeffectivityofeachmethodindifferentmaterials AT baltazarzamoramiguelangel electrochemicalnoiseanalysisanapproachtotheeffectivityofeachmethodindifferentmaterials AT santiagohurtadogriselda electrochemicalnoiseanalysisanapproachtotheeffectivityofeachmethodindifferentmaterials AT estupinanlopezfranciscohumberto electrochemicalnoiseanalysisanapproachtotheeffectivityofeachmethodindifferentmaterials AT landaruizlaura electrochemicalnoiseanalysisanapproachtotheeffectivityofeachmethodindifferentmaterials AT nievesmendozademetrio electrochemicalnoiseanalysisanapproachtotheeffectivityofeachmethodindifferentmaterials AT almerayacalderonfacundo electrochemicalnoiseanalysisanapproachtotheeffectivityofeachmethodindifferentmaterials |